

CBAM TRAINING

CASE STUDY – CEMENT INDUSTRY

EGYPT

December 6, 2023

EUROPEAN BANK FOR RECONSTRUCTION AND DEVELOPMENT (EBRD)

European Bank for Reconstruction and Development

1. Characteristics of Cement Industry in EGYPT

2. Goods in scope of CBAM

3. Determination of embedded emissions in the Cement Industry

4. Decarbonization options and their impacts

5. Free Allowance Phase Out

6. Impact of CBAM on the Cement Industry and concluding remarks

2 © Ricardo plc November 2023

CBAM

CEMENT

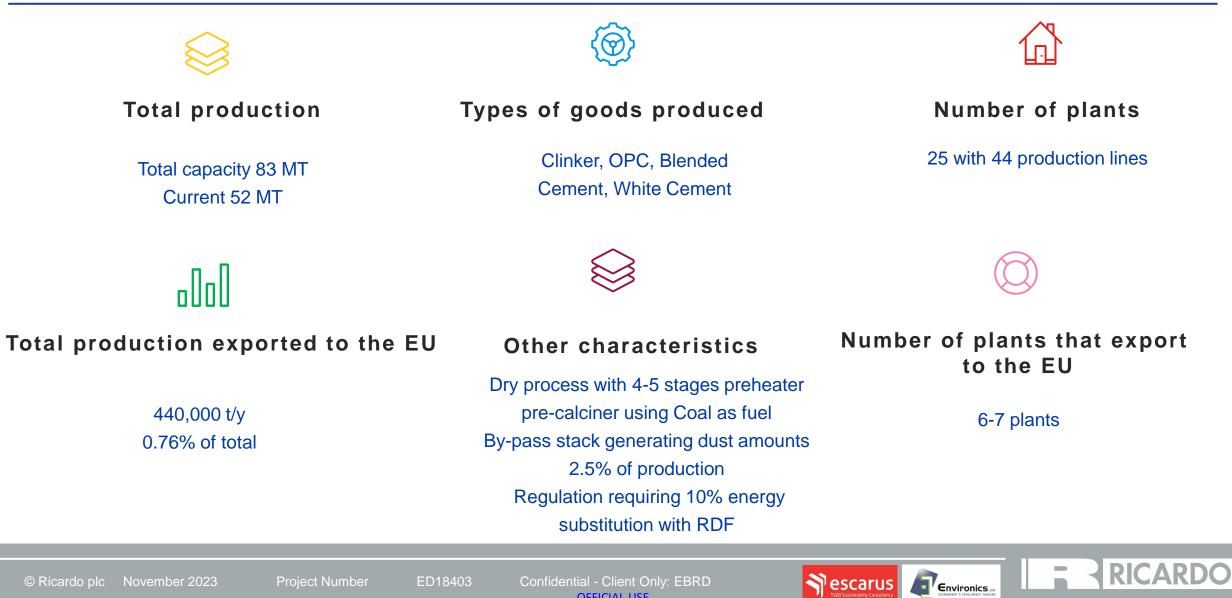
INDUSTRY

Project Number

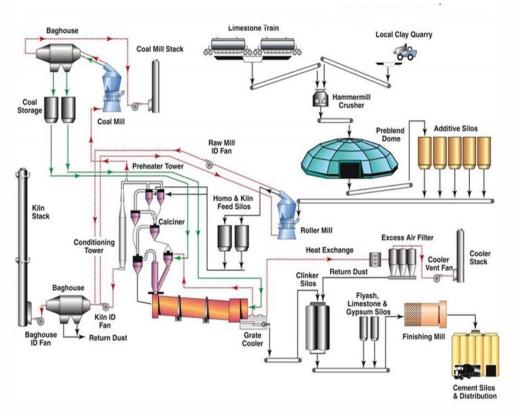
ED18403

CHARACTERISTICS OF THE CEMENT INDUSTRY IN EGYPT

3 © Ricardo plc November 2023


Project Number

ED18403


CHARACTERISTICS OF THE CEMENT INDUSTRY

OFFICIAL USE

PRODUCTION PROCESS IN A TYPICAL CEMENT PLANT IN EGYPT

- All plants use the dry process with 4-5 preheater pre-calciner stages.
- Coal and Petcoke are used as primary fuel, and the Coal mill is Atex certified.
- The main raw materials, limestone and clay are obtained from local quarries. Due to the high chloride content in raw materials, a portion of kiln gases is extracted from the kiln through a by-pass stack. The separated by-pass dust amounts to 2.5 % of produced clinker. It is landfilled in depleted limestone quarries.
- The main product is Ordinary Portland cement with about 90% of clinker. Blended cement are produced for exporting purposes.
- Bag filters have been replacing EPs as Environmental regulations have been tightened. Stacks are equipped with continuous monitoring devices and connected to central Environmental Agency network.
- MOE issued a decree that requires a replacement of 10% thermal energy by RDF.
- Due to oversupply of cement, the GOE put a cap on production proportional to company capacity. This reduces the % of utilization

Project Number

ED18403

RESULTS OF CARBON FOOTPRINT CALCULATIONS (tCO₂/t product)

SUMMARY OF ESTIMATED EMISSIONS (slides 13-15)

Product	Scope 1	Scope 2	Scope 3	Embedded Emissions
Clinker	1.09	0.017	0	1.1
Cement	0	0.065	0.985	1.05

Project Number

ED18403

GOODS IN SCOPE OF CBAM – CEMENT SECTOR

Clinker Simple good Produced from fuels and raw materials considered to have zero embedded emissions under CBAM

Cement Complex good Produced from other CBAM goods (either simple or complex goods)

CN code	Aggregated goods category	Greenhouse gas
Cement		
2507 00 80 - Other kaolinic clays	Calcined clay	Carbon dioxide
2523 10 00 - Cement clinkers	Cement clinker	Carbon dioxide
2523 21 00 – White Portland cement, whether or not artificially coloured	Cement	Carbon dioxide
2523 29 00 - Other Portland cement		
2523 90 00 - Other hydraulic cements		
2523 30 00 – Aluminous cement	Aluminous cement	Carbon dioxide

7 © Ricardo plc November 2023

Project Number

ED18403

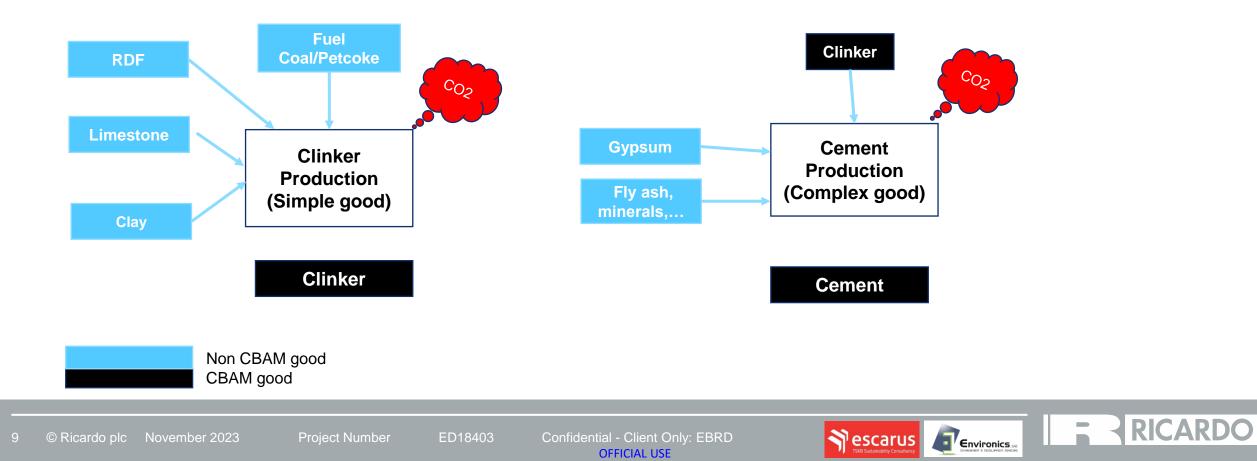
GOODS IN SCOPE OF CBAM FOR THE CEMENT SECTOR

8 © Ricardo plc November 2

Project Number

Confidential - Client Or OFFICIAL USE

ED18403



SIMPLE/ COMPLEX GOODS IN CEMENT SECTOR

In the context of the CBAM, all types of cement are defined as complex goods as they are produced from precursors such as clinker, which is a good category in the scope of the CBAM.

Clinker on the other hand, is a simple good. Its embedded emissions do not include any precursors.

DETERMINATION OF EMBEDDED EMISSIONS IN THE CEMENT SECTOR

10 © Ricardo plc November 2023

Project Number

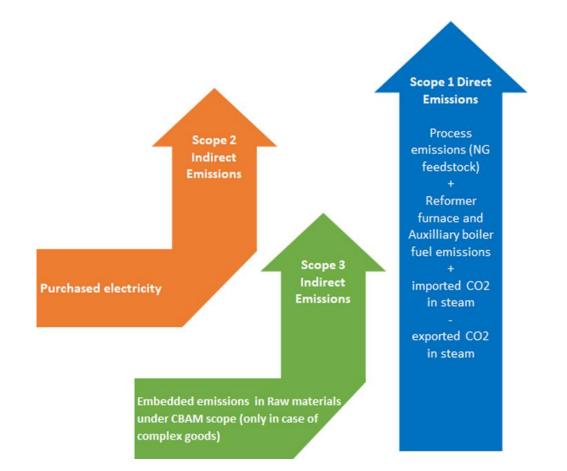
ED18403

Confidential - Client Or OFFICIAL USE

OVERVIEW OF EMBEDDED EMISSIONS IN CEMENT

Scope 1 Direct emissions =

Process emissions (CO2 from reaction) + fuel emissions + imported steam + imported waste gases – exported steam – exported electricity – exported CO2


Scope 2 Indirect emissions =

Purchased electricity

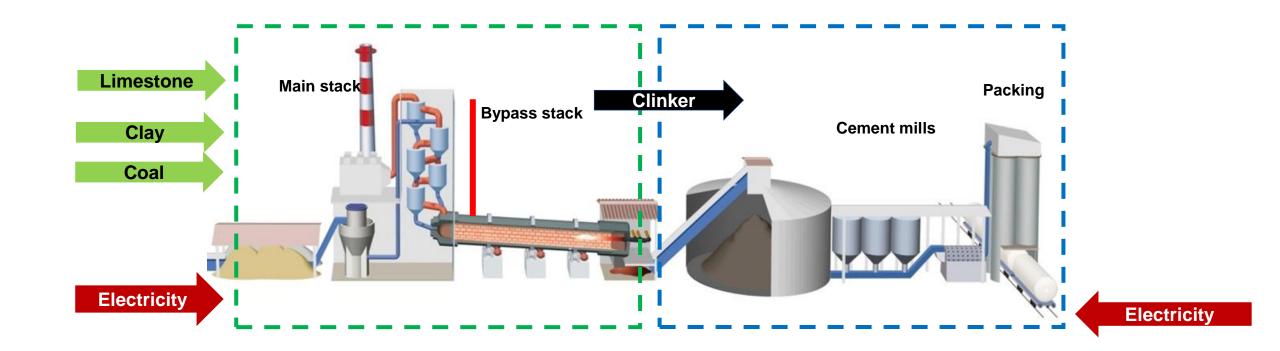
Scope 3 emissions upstream =

Embedded CO2 in raw material under CBAM scope (only in case of complex goods)

Total embedded emissions = Scope 1 +2 + 3

Project Number

ED18403


Confidential - Client Only: EBRD OFFICIAL USE

RICARDO

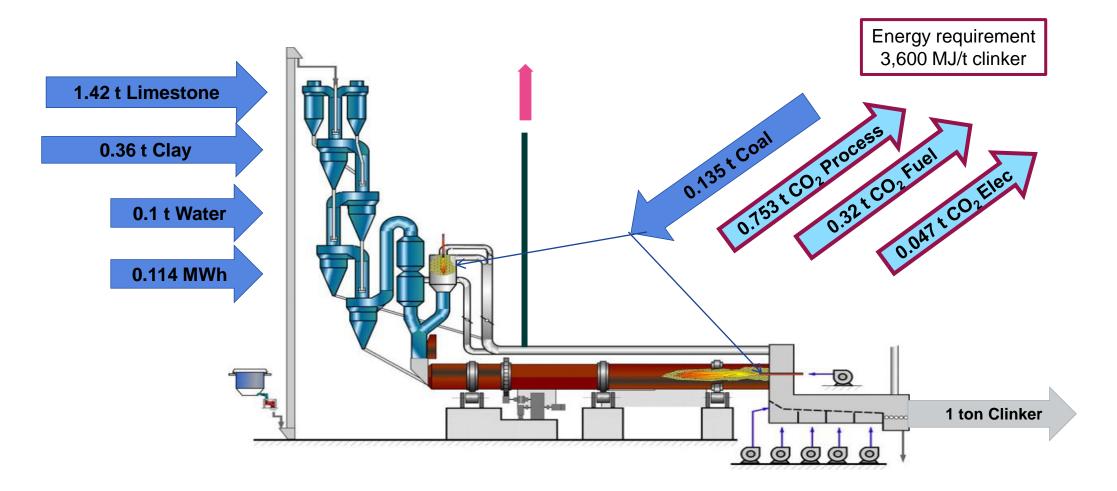
DETERMINATION OF EMBEDDED EMISSIONS IN THE CEMENT SECTOR

SETTING THE BOUNDARY FOR ESTIMATING EMBEDDED EMISSIONS IN CLINKER AND CEMENT

12 © Ricardo plc November 2023

Project Number

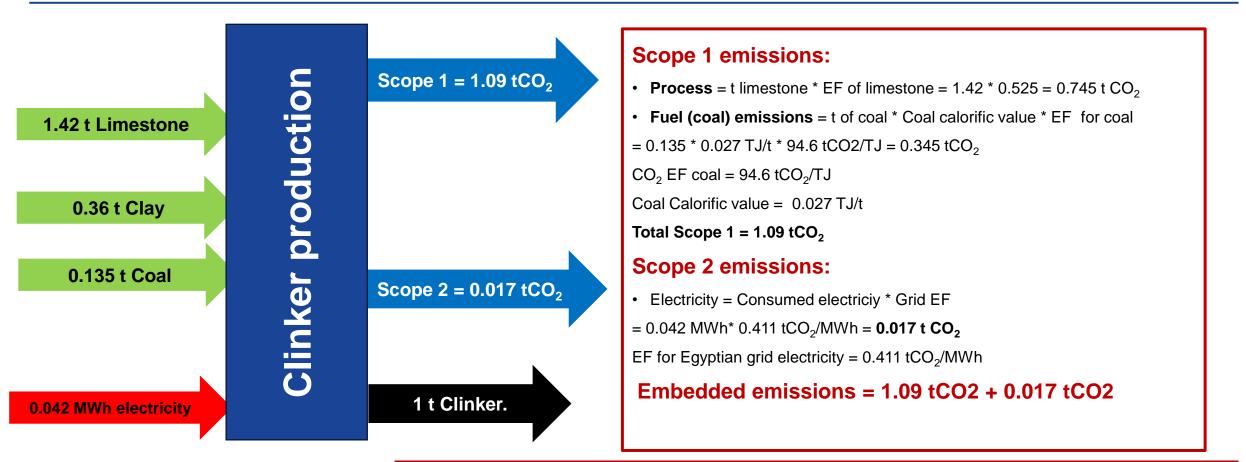
ED18403


Confidential - Client Only: EBRI OFFICIAL USE

RICARDO

DETERMINATION OF EMBEDDED EMISSIONS IN THE CEMENT SECTOR

MASS BALANCE ON CLINKER PRODUCTION


13 © Ricardo plc November 2023

Project Number

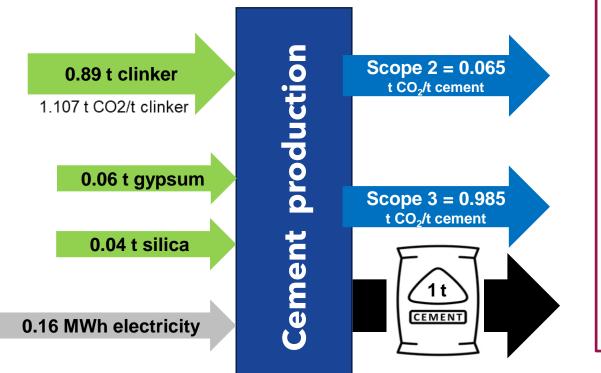
ED18403

CALCULATING EMBEDDED EMISSIONS IN CLINKER

Clinker embedded emissions = 1.107 tCO2 / t Clinker

14 © Ricardo plc November 2023

Project Number


ED18403

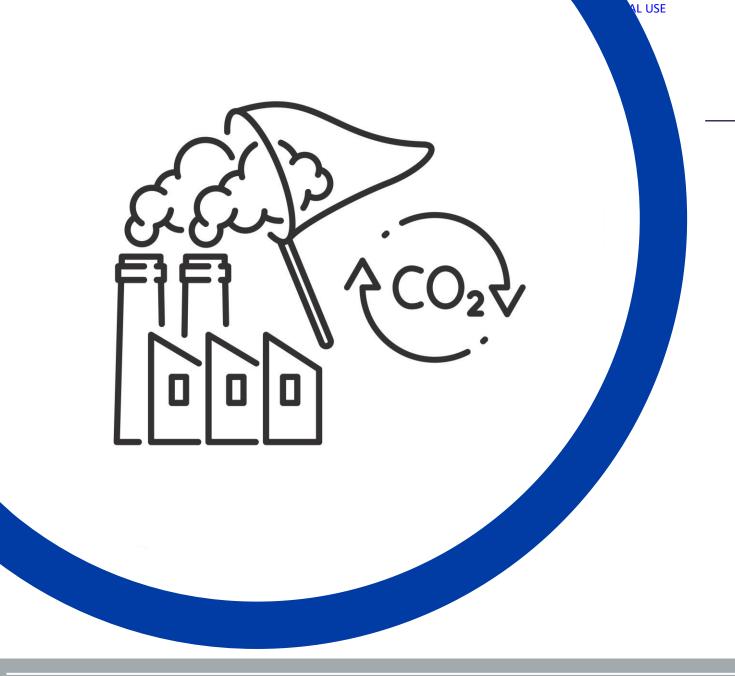
Confidential - Client Only: EBRD OFFICIAL USE

RICARDO

CALCULATING EMBEDDED EMISSIONS IN PORTLAND CEMENT

Scope 1: No process CO2, No fuel = 0 Scope 2: Electricity = Electricity consumption * EF = 0.16 MWh * 0.411 $tCO_2/MWh = 0.065 t CO_2$ EF for Egyptian grid electricity = 0.411 tCO_2/MWh Scope 3 = 1.107 $t CO_2/t$ clinker * 0.89 t clinker = 0.985 $t CO_2/t$ cement Embedded CO2 = 0.065 + 0.985 (tCO_2/t cement)

Cement embedded emissions = 1.05 CO2/t Cement


15 © Ricardo plc November 2023

Project Number

ED18403

DECARBONISATION OPTIONS AND THEIR IMPACT

16 © Ricardo plc November 2023

Project Number

Confidential - Client Or OFFICIAL USE

ED18403

Since Section 2010 Constantions

CO-PROCESSING OF ALTERNATIVE FUELS

% of dry weight		carbon	
Default	Range	Default	Range
46	42-50	1	0-5
50	25-50	20	0-50
38	20-50	-	0
50	46-54	-	0
49	45-55	0	0
70	54-90	10	10
67	67	20	20
75	67-85	100	95-100
	Default 46 50 38 50 49 70 67	Default Range 46 42-50 50 25-50 38 20-50 50 46-54 49 45-55 70 54-90 67 67	% of dry weight car Default Range Default 46 42-50 1 50 25-50 20 38 20-50 - 50 46-54 - 49 45-55 0 70 54-90 10 67 67 20

Replace coal with Alternative Fuel

Energy requirement 857 kcal/kg = 3,600 kJ/kg clinker

Main barrier is availability of biomass. To reach 40% substitution 0.094

t biomass/ t clinker are required. Assuming an overall clinker

production of 45 million ton, an amount of 4.23 million tons of biomass would be required per year.

CO2 emissions are calculated from fossil carbon content, for biomass it is zero.

% substitution	Energy from coal kJ/kg clinker	Fuel emissions tCO2/t cl
10%	3,240	0.306
40%	2,160	0.204

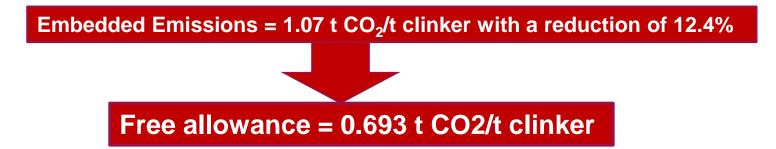
RICARDO

ED18403

Confidential - Client Only: EBRD

Estimation of CO2 reduction by co-processing of biomass

Embedded emissions before substitution = 1.107 tCO2/t clinker


ED18403

Replacing coal with Alternative Fuel will impact fuel emissions as follows:

- Process emissions (from limestone **0.745** tCO2/t Clinker) remains the same.
- Fuel emissions (0.345 tCO2/t clinker) will decrease by an amount proportional to the % substitution).
- Scope 2 emissions (from electricity **0.017** tCO2/t Clinker) remains the same.

For 10% substitution Embedded emissions in clinker = 0.745 + 0.345 * 0.9 + 0.017 = 1.07 tCO2/t clinker

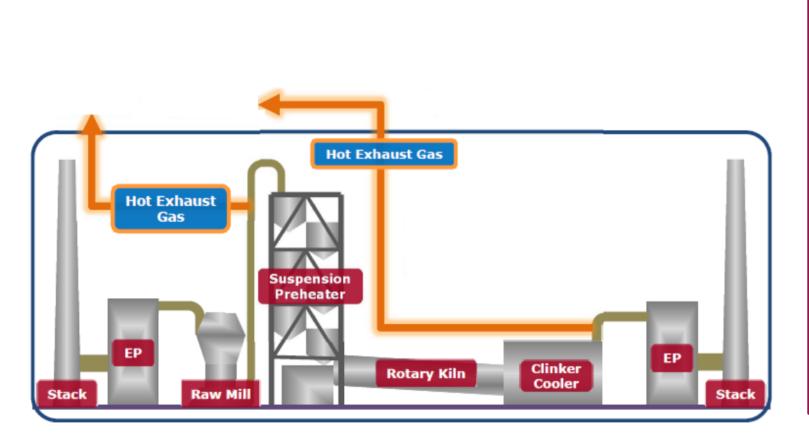
For 40% substitution Embedded emissions = 0.745 + 0.345 * 0.6 + 0.017 = 0.97 tCO2/t clinker

18 © Ricardo plc November 2023

Project Number

IMPLEMENTING ENERGY EFFICIENCY PROJECTS

- **Minimizing False air:** False air increases energy consumption due to higher air volume, which also results in higher power consumption and electricity consumption for fan operation. The BAT (Best Available Technology) benchmark value for the volumetric flowrate of air is 2300 m³/t clinker.
- Reduction of by-pass: By-pass increases as chlorides content in raw material increases.
- Equipment maintenance and optimization
- Use of oxygen enriched air : It will result in higher combustion efficiency leading to reduced amount of coal/t clinker.
- Increase % capacity utilization


CO2 reduction from energy efficiency < 5%

ED18403

INSTALLATION OF COMBINED HEAT AND POWER (CHP) PLANTS

Combined Heat and Power (CHP) generation

- The maximum power generated from waste heat represents 9% of the power requirement.
- Grid power reduction
 = Power required * 0.09 = 0.042 * 0.09
 = 0.00378 kWh/t clinker
- Resulting decrease in CO2 emissions = 0.00378 kWh/t * 0.411 kg CO2/kWh (Grid EF)
 = 0.0015 tCO2/t clinker
- Embedded Emissions will be reduced by this negligible amount to become 1.107- 0.0015 = 1.106
- For a production line of 13,500 t clinker/d, the annual reduction will only be 4,455 tCO2.
- The main benefit is financial.

Embedded emissions = 1.106

RICARDO

JFE Engineering corporation, 2018

20 © Ricardo plc November 2023

Project Number

ED18403

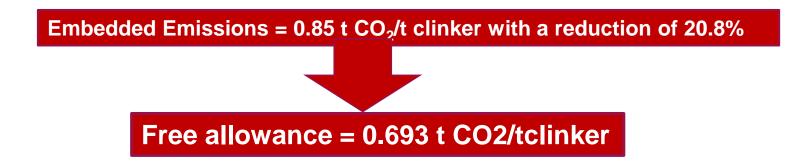
USE OF GREEN HYDROGEN AS FUEL

Green Hydrogen using solar PV leads to a GHG footprint of 1.7–4.4 tCO2/ tH2 ≈ 3 tCO2/t H2

Calorific value of Hydrogen = 120 - 142 MJ/kg

Hydrogen requirement to produce 1 t clinker = 3,465 MJ/ t clinker / 130,000 MJ/t H2 = 0.026 t H2/t clinker

Fuel emissions = 0.026 t H2/ t clinker * 3 tCO2/t H2 = 0.08 t CO₂/t clinker


ED18403

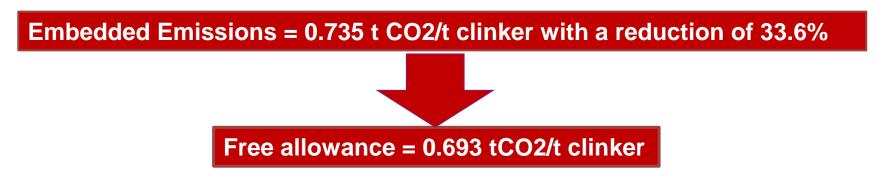
Clinker Embedded Emissions become

Scope 1 = 0.745 (process emissions) + 0.08 (emissions from fuel Hydrogen)

= 0.833 t CO2/t clinker

Scope 2 = 0.017 t CO2/t clinker

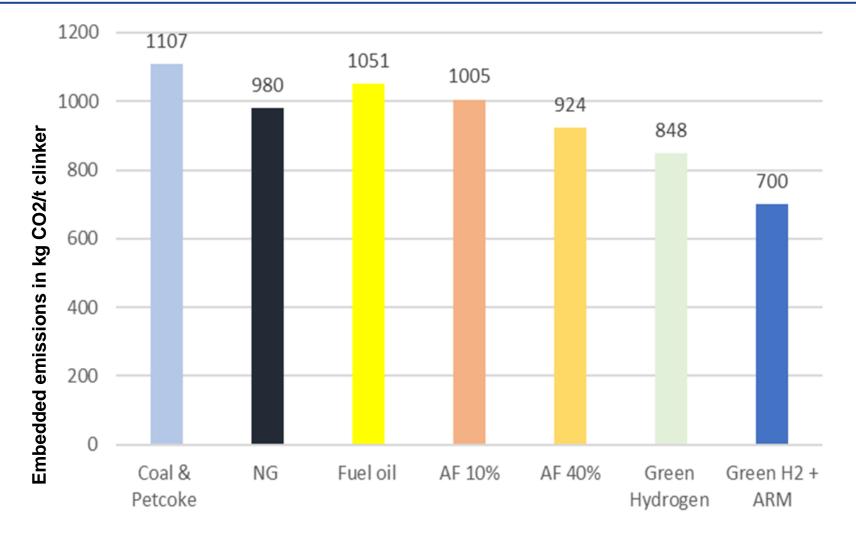
Project Number


Confidential - Client Only: EBRD OFFICIAL USE

RICARDO

ALTERNATIVE RAW MATERIALS TO REDUCE PROCESS EMISSIONS

- The largest source of CO2 comes from RM calcination. The use of alternative decarbonated materials will significantly reduce CO2 emissions. Waste materials and by-products from other industries can be used.
 - recycled cement paste from demolition waste
 - air-cooled slag
 - waste lime
- CEMBUREAU expects up to a 3.5% reduction of process CO2 using decarbonated materials by 2030 and up to 8% reduction by 2050.
- Using green hydrogen as fuel and alternative RM resulting in 3.5% reduction of CO2 emissions PCF = 0.745 * 0.965 + 0.017 = 0.735 t CO2/ t Clinker



Project Number

ED18403

IMPACT OF DECARBONIZATION OPTIONS ON CLINKER EMBEDDED EMISSIONS

23 © Ricardo plc November 2023

Project Number

ED18403

Confidential - Client Only: EBRD OFFICIAL USE

RICARDO

FREE ALLOWANCE PHASE OUT

24 © Ricardo plc November 20

Project Number

ED18403

Confidential - Client Or OFFICIAL USE

FREE ALLOWANCE PHASE OUT FOR CEMENT SECTOR

Impact of phase out on deviation from free allowance for the various decarbonization projects, **tCO2/t clinker**

Case 1: 40% substitution of thermal energy by RDF energy

Case 2: Use of green hydrogen as fuel

Case 3: Use of Alternative Raw Material 3.5% reduction in process emissions

Case 4: Green H2 + ARM

Impact of decarbonization on deviation from free allowance					
	Current	Case 1	Case 2	Case 3	Case 4
2023	0.414	0.231	0.155	0.042	0.007
2027	0.463	0.280	0.204	0.091	0.056
2028	0.525	0.342	0.266	0.153	0.118
2030	0.761	0.578	0.502	0.389	0.354
2032	1.107	0.924	0.848	0.735	0.700

RICARDO

25 © Ricardo plc November 2023

Project Number

ED18403

IMPACT OF CBAM AND CONCLUDING REMARKS

26 © Ricardo plc November 20

Project Number

ED18403

Confidential - Client Or OFFICIAL USE

IMPACTS OF CBAM - CEMENT SECTOR

Only precursors have ETS free allowances. CBAM cost on a complex good such as cement will depend on the amount of precursor clinker in the complex good. In the case of cement, each type of cement has a different range of clinker ratio.

Because of the free allowance phase out, deviation from free allowance will increase with phase out and decrease with implementation of decarbonization project (Table 1).

CBAM cost in €/ t Cement = deviation * Clinker ratio * (80 €/t CO2).

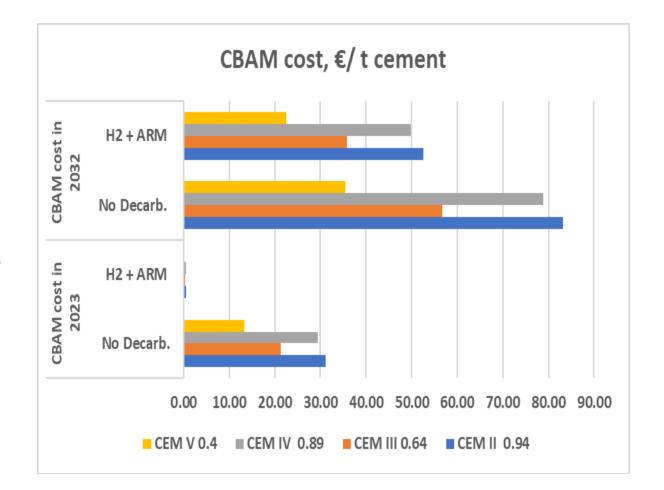
CBAM cost per ton of different types of cement before and after implementing proposed projects is given in Table 2.

The table shows that exporting Low clinker ratio cement will increase competitiveness of Egyptian cement companies in the European market.

Table 1 Deviations of embedded Emissions from free allowance					
	Deviation 2023		Deviation 2032		
	None	H2 + ARM	None	H2 + ARM	
Clinker Embedded Emissions	0.414	0.007	1.107	0.7	

Table 2					
	CBAM cost in 2023		CBAM cost in 2032		
Cement type	No Decarb. H2 +	- ARM No	Decarb. H2	+ ARM	
CEM II	31.13	0.53	83.25	52.64	
CEM III	21.20	0.36	56.68	35.84	
CEM IV	29.48	0.50	78.82	49.84	
CEM V	13.25	0.22	35.42	22.40	

27


ED18403 Confidential

Concluding remarks

Process emissions are hard to abate as long as limestone substitutes have not been found. If Net Zero is to be targeted by International Cement Companies Carbon Capture Use and Storage will have to be considered.

Companies will have to weigh their options based on a financial feasibility that would take into consideration factors such as:

- Investment and operating costs of implemented decarbonization project
- Potential tapping into non-CBAM markets
- Current and future CBAM cost
- Change in ETS cost of CO2

RICARDO

Project Number

ED18403

REFERENCES

- Decarbonization options for cement Industry, JRC, 2023
- Alternative clinker technologies, Materials, MDPI, 2022
- Low-carbon Roadmap for the Egyptian Cement Industry, EBRD, 2016
- Country Climate and Development Report, WB, 2022
- UNIDO Benchmark Study for Cement, 2021
- IPPC-BREF Manual for Cement, 2013

29 © Ricardo plc November 2023

Project Number

ED18403

THANK YOU!

Shadia Elshishini

E-mail: sselshishini@gmail.com

30 © Ricardo plc November 2023

Project Number

ED18403 Confidential - Cli

